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Abstract: Many data sets consist of variables with an inherent group
structure. The problem of group selection has been well studied, but in
this paper, we seek to do the opposite: our goal is to select at least one
variable from each group in the context of predictive regression modeling.
This problem is NP-hard, but we propose the tightest convex relaxation:
a composite penalty that is a combination of the �1 and �2 norms. Our
so-called Exclusive Lasso method performs structured variable selection by
ensuring that at least one variable is selected from each group. We study
our method’s statistical properties and develop computationally scalable
algorithms for fitting the Exclusive Lasso. We study the effectiveness of
our method via simulations as well as using NMR spectroscopy data. Here,
we use the Exclusive Lasso to select the appropriate chemical shift from
a dictionary of possible chemical shifts for each molecule in the biological
sample.
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1. Introduction

In regression problems with a predefined group structure, we seek to accurately
predict the response using a small subset of variables consisting of at least one
variable from each group. This structured sparsity assumption arises in a num-
ber of genomics and proteomics problems. Existing sparse regression methods,
however, do not directly enforce the desired structure. To this end, we develop
methodology for sparse regression with the Exclusive Lasso, a convex penalty
first introduced by (Zhou et al., 2010) in the context of multi-task learning.
Similar to the Group Lasso (Yuan and Lin, 2006), the Exclusive Lasso penalty
is a composite penalty (Zhao et al., 2009) that uses both an �1 norm and an �2
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norm. Loosely, the penalty performs selection within group by applying separate
lasso penalties to each group. At the group level, the penalty is a ridge penalty
preventing entire groups of coefficients from being set to zero. The group struc-
ture informs the type of regularization, utilizing the �1 and �2 norms within
and between groups respectively. Throughout the literature, there are methods
for structured sparsity with strong theoretical guarantees and fast algorithms
(Obozinski and Bach, 2012; Halabi and Cevher, 2014; Genovese et al., 2012;
Wainwright, 2009; Beck and Teboulle, 2009). The Exclusive Lasso however, has
received little attention and has not yet been developed for applications out-
side of multi-task learning or carefully studied as a statistical method for sparse
regression.

Consider a motivating example from genomics. Gene set analysis seeks to
group genes based on genomic pathways and associate these gene sets with clin-
ical outcomes. Commonly, the group lasso penalty has been used to select entire
gene sets (Ma et al., 2007; Simon et al., 2013). Yet, one may also be interested
in understanding how all the gene sets are related to a response and select the
most representative gene from each gene set. Selecting one variable from each
group cannot be easily achieved using existing techniques such as the Lasso or
Marginal Regression (Tibshirani, 1996). If the Lasso’s incoherence condition and
β-min condition are satisfied and Marginal Regression’s faithfulness assumption
is satisfied, then both methods recover the correct variables without any knowl-
edge of the group structure (Genovese et al., 2012; Wainwright, 2009). However,
data rarely satisfies these assumptions. Consider that if two variables are cor-
related with each other, the Lasso often selects one instead of both variables.
When whole groups are correlated, the Lasso may only select variables in one
group as opposed to variables across multiple groups. Similarly, if the variables
most correlated with the response are in the same group, Marginal Regression
will ignore the true variables in other groups. In our example, genes are grouped
together because they belong to the same pathway and hence are highly corre-
lated. In these situations, the fact that the Lasso and Marginal regression are
agnostic to the group structure hurts their ability to select a reasonable set of
variables across all predefined groups. If we know that this group structure is
inherent to our problem, then complex real world data motivate the need to
develop new structured variable selection methods that directly select variables
within each group. Although the Exclusive Lasso penalty can yield this spar-
sity structure (Obozinski and Bach, 2012), this penalty has not been developed
statistically for sparse regression. Specifically, there are no algorithms in the lit-
erature to fit the Exclusive Lasso. Its statistical properties such as consistency,
sparsistency, and degrees of freedom, are not well understood. We address these
concerns and evaluate the effectiveness of the method using an example inspired
by yet another real world problem arising in proteomics.

2. Exclusive Lasso

We study the Exclusive Lasso penalty in the context of penalized regression
when there are predefined groups. Consider the linear model where the response
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is a linear combination of the variables subject to Gaussian noise: y = Xβ∗ + ε
where ε is i.i.d Gaussian. For notational convenience, we assume the response
is centered to eliminate an intercept term. We assume β∗ is structured such
that its indices are divided into non-overlapping predefined groups and that the
support of β∗ is distributed across all groups. We allow the support set within
a group to be as small as one element and as large as the entire group. We can
write this as two structural assumptions.

Assumption (1): There exists a collection of non-overlapping predefined groups
denoted, G, such that ∪

g∈G
g = {1, . . . , p}, ∩

g,g′
= ∅ for all pairs of groups g, g′ ∈ G.

Assumption (2): The support set S of the true parameter β∗ is non-empty in
each group such that for all g ∈ G we have S ∩ g �= ∅ and β∗

i �= 0 for all i ∈ S.

Throughout the paper we study

β̂ = argmin
β

1

2
‖y −Xβ‖22 +

λ

2

∑
g∈G

⎛⎝∑
i∈g

|βi|

⎞⎠2

(1)

and its equivalent constrained optimization problem. Occasionally, we refer to
the penalty as P (β) where P (β) = 1

2

∑
g∈G (‖βg‖1)2. Again, the optimization

problem highlights that the Exclusive Lasso penalty is the �1-norm within groups
and the �2-norm between. Figure 1 highlights the connection between the penal-
ties.

Fig 1. The unit ball for the Exclusive Lasso penalty in three dimensions for β =
(β11, β12, β21), where the first two variables are in group one and the third variable is in
group two. Figure (a) shows β11 vs β12 highlighting its connection to the �1 norm. Figure (b)
shows β21 vs β12 highlighting its connection to the �2 norm. Figure (c) shows that the penalty
inherits properties from both penalties.

3. Optimality conditions

In order to understand the behavior of the Exclusive Lasso, we study its op-
timality conditions. Specifically, we use first order conditions to show that our
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estimate behaves like an adaptively shrunken ridge problem that encourages ex-
clusivity within groups. Throughout this section we adopt the notation for the
subgradient of a convex function found in Rockafellar and Wets (2009). Recall
the subdifferential of a function f at point x, denoted ∂f(x), is the collection
of all subgradients of f at x. We use the subdifferential to characterize the ac-
tive set by deriving two expressions for the Exclusive Lasso estimate β̂. Because
problem (1) is convex, an optimal point satisfies −XT (y−X β̂)+λz = 0 where
z is an element of the subdifferential such that

zi ∈ ∂P (β̂) =

{
sign(β̂i)‖ β̂g ‖1 if β̂i �= 0, i ∈ g[
−‖ β̂g ‖1, ‖ β̂g ‖1

]
if β̂i = 0, i ∈ g.

(2)

Alternatively, we can express the sub gradient as the product of a matrix and
a vector. If we let Mg = sign(β̂s∩g)sign(β̂s∩g)

T and let MS be a block diagonal
matrix with matrices Mg on the diagonal, then the sub gradient restricted to

the support set Ŝ of β̂ will be zŜ = MŜ β̂Ŝ .
Note that the matrix MŜ depends on the support set as the block diagonal

matrices are defined by the nonzero elements of β̂ in each group.

Proposition (1): Let Ŝ be the support set of β̂, then

β̂Ŝ = (XT
Ŝ
XŜ + λMŜ)

†XT
Ŝ
y and β̂Ŝc = 0.

Here † denotes the Moore-Penrose pseudoinverse. The matrix MŜ distinguishes
the Exclusive Lasso from similar estimates like Ridge Regression. It is a block di-
agonal matrix that is only equivalent to the identity matrix when there is exactly
one nonzero variable in each group. At this point, the Exclusive Lasso behaves
like a Ridge Regression estimate on the nonzero indices that it has selected.

This characterization describes the behavior of the nonzero variables but it
does not describe the behavior of the entire active set as we vary λ. To derive a
second characterization of β̂, we note that the optimality conditions imply that
every nonzero variable in the same group has an equal correlation with the resid-
ual XT

i (y−X β̂). This allows us to determine when variables enter and exit the
active set. There is always at least one nonzero variable in each group because the
�2-norm at the group level ensures that the norm of each group ‖ β̂g ‖ is always
greater then 0. Another variable only enters the active set once its correlation
with the residual is equal to the correlation shared by the other nonzero vari-
ables in the same group. We call the set E = {i : |XT

i (y−X β̂)|/‖ β̂g ‖1 = λ} the
“group weighted equicorrelation set” because of its resemblance to the equicor-
relation set described in Efron et al. (2004). We can use this set to derive an

explicit formula for β̂.

Proposition (2): If E is the group weighted equicorrelation set, i is in group g,

γ′ is a vector such that γ′
i = ‖ β̂g ‖1−| β̂i |, s ∈ {−1, 1}| E | is a vector of signs that

satisfies the optimality conditions and Ec is the compliment of the set E then,

β̂E = (XT
E XE + λI)−1[XT

E y − λγ′s] and β̂Ec = 0. (3)
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The expression points to the general behavior of the penalty. For the non-
zero indices, the first term is a ridge regression estimate (XT

E XE + λI)−1XT
E y.

The second term (XT
E XE + λI)−1λγ′s adaptively shrinks the variables to zero

competitively within each group. In the case where all groups have exactly
one non-zero element, the Exclusive Lasso is a ridge regression estimate, en-
suring that the Exclusive Lasso always selects at least one non-zero element in
each group. This characterization also helps us see that for λ large enough, our
method usually selects exactly one non-zero element in each group, but this is
not guaranteed. See Appendix E for more details.

Before proceeding, we use a small simulated example to compare the behavior
of the Lasso to the behavior of the Exclusive Lasso. We let y = Xβ∗+ε where ε ∼
N(0, 1). The design matrix X ∈ R20×30 is multivariate normal with covariance
that encourages correlation between groups and within groups. The incoherence
condition is not satisfied with ‖|XT

ScXS(X
T
S XS)

−1|‖∞ = 2.603. There are five
groups and β∗ is nonzero for one variable in each group. In Figure 2, we show
the Exclusive Lasso and Lasso regularization paths for this example. In the
figure, the solid lines are the truly nonzero variables and each color represents
a different group. The Exclusive Lasso sends variables to zero until there is
exactly one nonzero variable in each group whereas the Lasso eventually sends
all variables to zero. Further, the Lasso does not enforce the group structure;
the first five variables to enter the regularization path only represent three of
the five groups. Because of this, the Lasso misses several true variables. The
regularization path also highlights the Exclusive Lasso’s connection to Ridge
Regression; five variables will never go to zero. Overall, our work highlights that
the Exclusive Lasso behaves like an adaptively shrunken ridge problem that
forces competition or exclusivity within groups.

4. Statistical theory

We study prediction consistency and selection consistency for the Exclusive
Lasso.

Prediction consistency

We focus on establishing prediction consistency under weak assumptions that
are likely to be satisfied in practice. To this end, we begin by studying prediction
consistency using the framework presented in Chatterjee (2013) for the Lasso.
We make three assumptions and focus on bounding the mean squared prediction
error.

Assumption (3): The training data X ∈ R
n×p is generated by a probability

distribution with covariance Σ, and the entries of X are bounded so that |Xij | ≤
M . The testing data X0 ∈ R

p is an additional independent observation from
the same distribution.

Assumption (4): The value of the penalty evaluated at the true parameter is
bounded so that P (β∗) ≤ K.
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Fig 2. The regularization paths for the Exclusive Lasso (left) and the Lasso (right) in a
small simulation consisting of five groups with one true variable in each group. The Exclusive
Lasso behaves like an adaptively regularized Ridge Regression estimate sending variables to
zero until only one variable from each group is nonzero. The Lasso sends variables to zero
without considering the group structure. Note that the first five variables to enter the model
for the Lasso represent only groups 3, 4 and 5, where as the Exclusive Lasso has five variables,
at least one from each group, that are in the model for all λ

.

Assumption (5): The response is generated by the linear model Y = Xβ∗ + ε

where ε
iid∼ N(0, σ2) and Y0 = XT

0 β
∗ + ε0 such that ε0

iid∼ N(0, σ2).

Definition (1): The mean squared prediction error is MSPE(β̂) = E(Y ∗
0 − Ŷ0)

2

if Y ∗
0 = X0β

∗ and Ŷ0 = X0 β̂ where β̂ is estimated using the training data X.

Definition (2): The estimated mean squared prediction error is eMSPE(β̂) =

1
n

n∑
i=1

(Y ∗
i − Ŷi)

2 if Y ∗
i = Xiβ

∗ and Ŷi = Xi β̂.

Let |G| be the number of groups; then using assumptions (3)–(5) we show
that the Exclusive Lasso is prediction consistent.

Theorem (1): Under assumptions (3)–(5), the mean squared prediction error

of β̂ is bounded such that

MSPE(β̂) ≤ 2(K + |G|)Mσ

√
2 log(2p)

n
+ 8(K + |G|)2M2

√
2 log(2p2)

n
. (4)

We can also bound the estimated mean squared prediction error.

Theorem (2): Under assumptions (3)–(5) the estimated mean squared predic-

tion error of β̂ is bounded such that

E[eMSPE(β̂)] ≤ 2(K + |G|)Mσ

√
2 log(2p)

n
. (5)



4226 F. Campbell and G. I. Allen

Assumptions (3)–(5) are not difficult to satisfy in practice with real data.
Many data sets will satisfy assumption (3). If we believe the data truly arises
from a linear model then assumptions (4) and (5) will be satisfied as well. These
assumptions are similar to those used to bound prediction consistency of the
Lasso and are much easier to satisfy in practice than assumptions for other
consistency results like sparsistency (Greenshtein et al., 2004; Chatterjee, 2013;
Wainwright, 2009).

Theorem 1 shows that the Exclusive Lasso is consistent in terms of the norm
‖x‖Σ. The group structure in the penalty appears in the bound as the cardinality
of the collection of groups. When there is only one group, this result reduces
to a bound of essentially the same order O(K2

√
log(p)/

√
n) as the bound for

the Lasso under similarly minimal assumptions (Bühlmann and Van De Geer,
2011). This suggests that we can allow n, p and the number of groups to scale
together and still ensure that the estimate is prediction consistent. Additionally,
if we do not consider M constant we can let the norm of the columns of X vary
with n, p and |G| as well. We use this result to justify using the Exclusive Lasso,
even in the high-dimensional setting, for prediction when a small number of
variables are desired in each group.

Alternatively if the data has mean zero we can interpret the the MSPE using
the covariance matrix Σ. In this setting, MSPE(β̂) = E‖ β̂−β∗‖2Σ where ‖x‖A =

xTAx and eMSPE(β̂) = ‖ β̂−β∗‖2
Σ̂
where Σ̂ = XTX/n.

If we add another assumption on the eigenvalues of Σ we can show that the
Exclusive Lasso estimate is consistent using the �2 norm.

Corollary (1): For centered data X, if the smallest eigenvalue of the covariance
matrix Σ is bounded below by c > 0 then the Exclusive Lasso estimate is
consistent in the �2-norm:

E‖ β̂−β∗‖22 ≤ 2

c
(K + |G|)Mσ

√
2 log(2p)

n
+

8

c
(K + |G|)2M2

√
2 log(2p2)

n
. (6)

Our additional assumption requires the covariance matrix to be strictly posi-
tive definite which is much more restrictive then our previous assumptions on Σ.
Tighter bounds are likely attainable using more restrictive assumptions on X.
For example, an assumption related to the subspace compatibility constant or
the restricted eigenvalue condition will likely yield improved bounds, but would
also severely limit the correlation structure permitted in the data.

Selection consistency

Next, we investigate under which conditions the Exclusive Lasso can estimate
the true support with high probability. Our analysis shares important similari-
ties to selection consistency, or “sparsistency”, results for the Lasso, but there
are key differences that arise as a result of our penalty and our group-wise
sparsity assumptions.

Assumption (6): Assume that the columns of X are standardized so that
‖Xj‖1 = 1.
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Assumption (7): Let dmin ≤ · · · ≤ dmax be the eigenvalues of XT
S XS and

assume that 0 < C2
min ≤ dmin ≤ dmax ≤ C2

max < ∞ where Cmin and Cmax are
constants.

Assumption (8): Assume ‖XT
ScXS(X

T
S XS + λ)−1‖∞,∞ < α for α =

kC2
maxλ

C2
max+λ

where λ is the regularization parameter and k is the number of groups.

Assumption (9): Assume ‖β∗‖1 > λL
√
2log(n) where L is a constant that

depends on Cmax, Cmin and λ.

Assumption (10): Assume there is exactly one non-zero variable in each group.

Theorem (3): If there exists a regularization parameter λ > 0 that yields an
Exclusive Lasso estimate with exactly one non-zero variable per group and X,
y and λ satisfy assumptions (1), (2) and (6)–(10), then the support of the Ex-
clusive Lasso estimate S is equal to the true support S∗ so that S = S∗ with
probability greater then or equal to 1− 1/n.

See Appendix B for the proof of Theorem 3.

Our result shows the conditions under which the Exclusive Lasso is model
selection consistent when selecting one true variable per group. We leave signed
selection consistency to later work. Notice that several of our assumptions and
conditions are similar to those found in other sparsistency results but differ
slightly due to the structure of our penalty. First, Assumption (6) and Assump-
tion (9) resemble common standardization and beta-min assumptions respec-
tively. Notice that where the standardization condition appears to be a cos-
metic difference, the beta-min condition is weaker than the condition presented
in Wainwright (2009). Our condition requires the aggregate signal strength to be
above a certain threshold instead of each variable individually. Next, Assump-
tion (7) is a standard bound on the size of the eigenvalues ensuring the solution
is unique. Finally, Assumption (8) is similar to the irrepresentable condition of
Zhao and Yu (2006) which states that ‖XT

ScXS(X
T
S XS)

−1‖∞,∞ < 1, but differs
in two ways. First for the Lasso, the irrepresentable condition must be strictly
less than one; for the Exclusive Lasso, this must be less than α. Notice that α
can be much greater than one, especially for large values of λ that are typical for
ensuring only one variable is selected per group. Second, notice that the irrepre-
sentable condition differs from Assumption (8) in that the empirical covariance
between the true support is shrunken towards λI, thus further decreasing the
value of our irrepresentable condition-like term. Putting these two together, we
see that the Exclusive Lasso will be selection consistent in situations where there
is much stronger correlation both within the true support and between the non-
support and support than those for which the Lasso is selection consistent. This
theoretical finding is consistent with our simulation studies which indicate that
the Exclusive Lasso outperforms the Lasso in terms of model selection when
there is strong correlation within or between groups. Overall, Theorem (3) gives
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fairly weak conditions under which the Exclusive Lasso is sparsistent. Future
research will extended these results to consider cases with more than one vari-
able per group and characterize the conditions under which it is possible to find
a λ that yields exactly one variable per group. (See Appendix E for additional
discussion of the later).

5. Estimation

There are currently no fast algorithms developed specifically to fit the Exclusive
Lasso regression problem. Because of the composite nature of our penalty, stan-
dard sparse algorithms such as coordinate descent, proximal gradient descent,
and alternating direction method of multipliers (ADMM) cannot be applied
to fit our method in a straightforward manner without further investigation.
However, careful investigation shows that we can develop a coordinate descent
algorithm even though our penalty violates the separability assumption typically
necessary for proving convergence. This leads to a coordinate descent algorithm
for fitting the Exclusive Lasso problem as well as an algorithm to compute the
proximal operator that allows us to develop additional first-order algorithms like
ADMM and proximal gradient descent. In this section, we present our coordinate
descent algorithm for fitting the Exclusive Lasso problem. A coordinate descent
scheme to compute the proximal operator for the Exclusive Lasso is given in
Appendix H where we also develop a proximal gradient algorithm using this
proximal operator as an example.

The Exclusive Lasso penalty is not a separable function meaning it cannot
be decomposed into functions of each individual variable, P (β) �=

∑p
j=1 Pj(βj).

This makes computing closed-form updates of all variables at once impossible
(see the subgradient equations in 2). Coordinate descent however, is a natural
algorithm to fit the Exclusive Lasso because it iteratively updates one variable at
a time while holding all others fixed. We present our coordinate descent scheme
to fit the Exclusive Lasso in Algorithm 1. Here, S(x, λ) = sign(x)(|x| − λ)+ is
the usual soft-thresholding function. Note that in the algorithm, we let g be the
group for index j and we use g\j to denote the set of indices in group g without
index j.

Input: β0 ∈ Rp, ε > 0
Output: β̂ ∈ Rp

Pre-compute XT y and XTX.
while ‖βk+1 − βk‖ > ε do

for j ∈ 1 to p do
z̃ = XT

j (y −
∑
l�=j

Xlβ
k
l )

λ̃ = λ
∑

l∈g\j
|βk

l |

βk+1
j = S

(
z̃

XT
j Xj+λ

, λ̃
(XT

j Xj+λ)

)
return β

Algorithm 1: Exclusive Lasso Coordinate Descent Algorithm
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The Exclusive Lasso coordinate descent updates, resemble the coordinate de-
scent updates for the Group Lasso presented by Yuan and Lin (2006) and that
of the Lasso (Wu and Lange, 2008). The correlation between the jth variable,
Xj , and the current residual is shrunken using the soft thresholding operator,
which is similar to the Lasso updates. And, like the Group Lasso, other vari-
ables in the same group affect the amount of shrinkage. Overall the algorithm is
not significantly more complicated or computationally intensive than the anal-
ogous coordinate descent algorithm for the Lasso, despite the added complexity
of the Exclusive Lasso penalty. Additionally, our experience suggests that the
coordinate descent algorithm is computationally fast when there is exactly one
nonzero variable in each group.

As we have mentioned, the Exclusive Lasso penalty is non-separable which
means that we cannot invoke standard convergence guarantees for coordinate
descent schemes (Tseng, 2001) without additional investigation. Nevertheless,
we prove that the Exclusive Lasso problem enjoys certain regularity conditions
that we can use to ensure that our coordinate descent algorithm converges to
the global minimum:

Theorem (4): The Exclusive Lasso coordinate descent algorithm converges to
the global minimum of (1).

See Appendix C for the proof of Theorem (4). Also, see Appendix H where
we develop a coordinate descent scheme to solve the Exclusive Lasso proximal
operator and use this in a proximal gradient descent method.

6. Model selection

In practice, we need a data-driven method to select the regularization parameter
and regulate the amount of sparsity within each group. To this end, we provide
an estimate of the degrees of freedom that will allow us to use the Bayesian
information criteria and the extended Bayesian information criteria for model
selection (Schwarz et al., 1978; Chen and Chen, 2008). While other general
model selection procedures like cross validation and stability selection can be
employed, these tend to over-select variables for the Exclusive Lasso; see details
in Appendix F.

We leverage techniques used by Stein (1981) and Tibshirani et al. (2012)
to calculate the degrees of freedom and provide an unbiased estimate of the
degrees of freedom. Previously, we defined the matrix MŜ as a block diagonal
matrix where each nonzero block Mg is the outer product of the sign vector of

the estimate, Mg = sign(β̂Ŝ∩g)sign(β̂Ŝ∩g)
T . This leads to our statement of the

degrees of freedom for ŷ:

Theorem (5): For any design matrix X and regularization parameter λ ≥ 0,

if y is normally distributed, then the degrees of freedom for ŷ = X β̂ is

ν(ŷ) = E
[
trace(XŜ(X

T
Ŝ
XŜ + λMŜ)

†XT
Ŝ
)
]
.
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An unbiased estimate of the degrees of freedom is then

ν̂(ŷ) = trace[XŜ(X
T
Ŝ
XŜ + λMŜ)

†XT
Ŝ
]. (7)

To verify this result, we compare our unbiased estimate of the degrees of
freedom to simulated degrees of freedom following the set up outlined in Efron
et al. (2004) and Zou et al. (2007). Empirically, our unbiased estimate of the
degrees of freedom closely matches the simulated degrees of freedom Figure 3.

Fig 3. Comparison of our estimate for the degrees of freedom to the simulated degrees of
freedom. The simulated degrees of freedom matches the estimated degrees of freedom very
closely.

Our degrees of freedom estimate allows one to select λ for the Exclusive
Lasso using the Bayesian information criteria or the extended Bayesian infor-
mation criteria in the high dimensional setting. If we want exactly one variable
per group, then usually we can select λ sufficiently large to achieve this. In
other cases, we suggest using the Bayesian information criteria or the extended
Bayesian information criteria to select λ and then threshold the estimate within
each group.

7. Simulation study

We study the empirical performance of our Exclusive Lasso through two sets of
simulation studies: first, for selecting one variable per group and second, for se-
lecting a small number of variables per group. We examine three situations with
moderate to large amounts of correlation between groups and within groups. We
omit the low correlation setting from the simulations because they correspond
to design matrices that are nearly orthogonal, satisfying both the Incoherence
condition and the Faithfulness condition in which all methods perform well.
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This is not representative of the types of real data for which we would need to
use the Exclusive Lasso. Situations requiring the Exclusive Lasso will have large
correlations based on group structure.

In the first simulations, we simulate data using the model y = Xβ∗+ ε where

ε
iid∼ N(0, 1) and β∗ is the true parameter. The variables are divided into five

equal sized groups and the true parameter is nonzero at one index in each group
and zero otherwise. We use three design matrices each with n = 100 observations
and p = 100 variables, to test the robustness of the Exclusive Lasso to within
group correlation and between group correlation. All three matrices are drawn
from a multivariate normal distribution with a Toeplitz covariance matrix with
entries Σij = w|i−j| for variables in the same group, and Σij = b|i−j| for variables
in different groups. The first covariance matrix uses constant b = .9 and w = .9
to simulate high correlation within groups and high correlation between groups.
The second covariance matrix uses b = .6 and w = .9 so that the correlation
between groups is lower then the correlation within groups, resulting in high
correlation within group and medium correlation between groups. The third
covariance matrix uses constants w = .6 and b = .6 so that there is medium
correlation both between group and within group.

We compare two versions of our Exclusive Lasso as described in the previ-
ous section. First, we use a regularization parameter λ, large enough to ensure
that the method selects exactly one element per group. In these simulations,
λ = max

i
|XT

i y| was large enough to ensure the correct structure was estimated;

we refer to this as the Exclusive Lasso. The second estimate, the Thresholded
Exclusive Lasso, chooses the regularization parameter λ that minimizes the BIC
and then thresholds in each group keeping the index with the largest magnitude.
We also compare our method to competitors and logical extensions of competi-
tors in the literature. We base three comparison methods on the Lasso: First,
we take the largest regularization parameter that yields exactly five nonzero
coefficients (Lasso); second, we take the largest λ that has nonzero indices in
each group and then threshold group-wise to keep the coefficient in each group
with the largest magnitude (Thresholded Lasso); third, we take the first co-
efficient along the Lasso regularization path to enter the active set from each
group (Thresholded Regularization Path). We use Marginal Regression where
we take the five indices that maximize |XT

i y| (Marginal Regression) and we take
the one coefficient in each group that maximizes |XT

i y| for i ∈ g (Group-wise
Marginal Regression). Finally, we use Elastic Net (Elastic Net) and Ridge Re-
gression with regularization parameters that minimize their respective BICs. We
threshold Ridge Regression so that the correct number of variables are estimated
(Thresholded Ridge Regression). For all methods we select a set of variables Ŝ,
and then use the data matrix restricted to this set XŜ to calculate an Ordinary

Least Square estimate β̂Ŝ . The prediction error is calculated using β̂Ŝ . Results
in terms of prediction error and variable selection recovery are given in Table 1.

The Exclusive Lasso outperforms all other methods at all levels of correla-
tion, likely because it selects more variables that are truly nonzero. We observe
that the thresholded estimators generally perform better then the non thresh-
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Table 1

Comparison of variable selection methods with exactly one true variable in each group.

Within group correlation=.9, Between group correlation =.9

Exclusive Lasso Marginal Group-wise Thresholded
Lasso Regression Marginal Exclusive

Regression Lasso

True Vars (SE) 4.40 (0.67) 2.54 (1.01) 1.06 (0.31) 2.98 (0.89) 4.28 (0.86)
False Vars (SE) 0.60 (0.67) 2.46 (1.01) 3.94 (0.31) 2.02 (0.89) 0.72 (0.86)
Pred Err (SE) 1.08 (0.08) 1.36 (0.11) 1.68 (0.10) 1.19 (0.12) 1.08 (0.11)

Thresholded Thresholded Elastic Thresholded
Lasso Regularization Net Ridge

Path

True Vars (SE) 3.82 (1.00) 3.40 (0.95) 1.16 (0.42) 3.20 (0.88)
False Vars (SE) 1.18 (1.00) 1.60 (0.95) 3.84 (0.42) 1.80 (0.88)
Pred Err (SE) 1.12 (0.11) 1.14 (0.11) 1.67 (0.11) 1.34 (0.17)

Within group correlation=.9, Between group correlation =.6

Exclusive Lasso Marginal Group-wise Thresholded
Lasso Regression Marginal Exclusive

Regression Lasso

True Vars (SE) 4.86 (0.45) 3.24 (0.92) 1.80 (0.67) 3.32 (0.62) 4.30 (0.81)
False Vars (SE) 0.14 (0.45) 1.76 (0.92) 3.20 (0.67) 1.68 (0.62) 0.70 (0.81)
Pred Err (SE) 1.07 (0.07) 1.28 (0.17) 1.62 (0.16) 1.16 (0.09) 1.09 (0.08)

Thresholded Thresholded Elastic Thresholded
Lasso Regularization Net Ridge

Path

True Vars (SE) 4.30 (0.74) 3.66 (0.77) 1.92 (0.70) 3.30 (0.91)
False Vars (SE) 0.70 (0.74) 1.34 (0.77) 3.08 (0.70) 1.70 (0.91)
Pred Err (SE) 1.07 (0.07) 1.12 (0.09) 1.60 (0.16) 1.33 (0.18)

Within group correlation=.6, Between group correlation =.6

Exclusive Lasso Marginal Group-wise Thresholded
Lasso Regression Marginal Exclusive

Regression Lasso

True Vars (SE) 5.00 (0.00) 4.40 (0.61) 3.52 (0.50) 4.08 (0.60) 4.80 (0.83)
False Vars (SE) 0.00 (0.00) 0.60 (0.61) 1.48 (0.50) 0.92 (0.60) 0.20 (0.83)
Pred Err (SE) 1.04 (0.08) 1.16 (0.16) 1.61 (0.15) 1.17 (0.13) 1.06 (0.17)

Thresholded Thresholded Elastic Thresholded
Lasso Regularization Net Ridge

Path

True Vars (SE) 4.60 (0.78) 4.68 (0.78) 3.62 (0.53) 4.36 (0.78)
False Vars (SE) 0.40 (0.78) 0.32 (0.78) 1.38 (0.53) 0.64 (0.78)
Pred Err (SE) 1.10 (0.16) 1.08 (0.15) 1.32 (0.17) 1.15 (0.17)
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olded estimators. These simulations highlight the Exclusive Lasso’s robustness
to moderate and large amounts of correlation, which is important considering we
expect variables in the same group to be similar and possibly highly correlated
with each other.

In the second set of simulations, we also simulate data using the model y =
Xβ∗ + ε where ε ∼ N(0, 1) and β∗ is the true parameter for n = p = 100. In
these simulations, the variables are divided into the same five equal-sized groups
but the true parameter can be nonzero at more than one index in each group.
Specifically, there are seven nonzero coefficients distributed so that three groups
have exactly one nonzero index and two groups have two nonzero indices each.
We simulate the design matrices in the same way we simulate design matrices
in the first set of simulations to have varying levels of between and within group
correlation.

We compare five methods: the Exclusive Lasso, the Lasso, the Lasso applied
independently to each group, the Elastic Net, and Thresholded Ridge Regres-
sion. For the Lasso and Exclusive Lasso we use EBIC to select the regularization
parameters. For the Elastic Net, Group-wise Lasso, and Thresholded Ridge Re-
gression, the EBIC resulted in solutions that were often entirely zero so we used
the BIC to select the regularization parameters. We used the oracle number of
variables to select additional parameters such as the threshold value for Thresh-
olded Ridge Regression. When we apply the Lasso separately to each group, we
use separate regularization parameters chosen independently with BIC.

Results in terms of prediction error and variable selection are presented in Ta-
ble 2. The Exclusive Lasso performs the best at support recovery and performs
comparably in terms of prediction error. We attribute the Exclusive Lasso’s
success to its ability to find estimates with the correct sparsity structure and
its ability to tolerate relatively high levels of correlation between variables. In
each simulation study presented, we are violating the irrepresentable condition
needed to guarantee that the Lasso selects the true support. We also note that al-
though Thresholded Ridge Regression performs well, especially when we tune it
to select the oracle number of variables, its performance falls short of the Exclu-
sive Lasso because it does not select variables that respect the group structure.
Overall, our results indicate that the Exclusive Lasso outperforms competing
methods for selecting one or a small number of variables per group when there
is strong correlation between and within groups. Additional simulation studies
can be found in Appendix G.

8. NMR spectroscopy study

Finally, we illustrate an application of the Exclusive Lasso for selecting the chem-
ical shift of molecules in Nuclear Magnetic Resonance (NMR) spectroscopy.
NMR spectroscopy is a high-throughput technology used to study the com-
plete metabolic profile of a biological sample by measuring a molecule’s inter-
action with an external magnetic field (De Graaf, 2013; Cavanagh et al., 1995).
This technology produces a spectrum where the chemical components of each
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Table 2

Comparison of variable selection methods with multiple true variables in a group.

Within group correlation=.9, Between group correlation =.9

Exclusive Lasso Group-wise Elastic Thresholded
Lasso Lasso Net Ridge

True Vars (SE) 6.70 (0.46) 6.10 (0.93) 3.04 (0.70) 2.96 (0.40) 4.48 (0.58)
False Vars (SE) 0.30 (0.46) 6.66 (2.33) 8.04 (2.65) 12.08 (0.90) 2.52 (0.58)
Pred Err (SE) 1.19 (0.10) 1.18 (0.46) 1.74 (0.13) 1.88 (0.09) 1.46 (0.19)

Within group correlation=.9, Between group correlation =.6

Exclusive Lasso Group-wise Elastic Thresholded
Lasso Lasso Net Ridge

True Vars (SE) 6.80 (0.40) 6.44 (0.81) 4.54 (0.68) 3.86 (0.40) 4.54 (0.81)
False Vars (SE) 0.20 (0.40) 5.28 (2.08) 5.72 (1.44) 9.76 (1.22) 2.46 (0.81)
Pred Err (SE) 1.20 (0.11) 1.11 (0.11) 1.42 (0.17) 1.78 (0.11) 1.50 (0.21)

Within group correlation=.6, Between group correlation =.6

Exclusive Lasso Group-wise Elastic Thresholded
Lasso Lasso Net Ridge

True Vars (SE) 7.00 (0.00) 7.00 (0.00) 3.98 (0.25) 3.00 (0.00) 5.50 (0.76)
False Vars (SE) 0.00 (0.00) 6.72 (17.65) 5.12 (1.89) 3.08 (0.67) 1.50 (0.76)
Pred Err (SE) 1.31 (0.13) 1.34 (1.31) 1.68 (0.10) 1.87 (0.09) 1.40 (0.22)

molecule resonate at a particular ppm. Ideally, NMR spectroscopy would al-
low us to identify and quantify the concentrations of all molecules in a given
biological sample, however this is challenging for numerous reasons discussed
in (Ebbels et al., 2011; Weljie et al., 2006; Zhang et al., 2009). Our work ac-
curately quantifies the relative concentrations of known molecules in a sample
by accounting for positional uncertainty inherent to NMR spectroscopy data.
This positional uncertainty is known as a “chemical shift” and is the phenomena
where every molecules’ chemical signature is subject to a random translation in
ppm due to the external physical environment of the sample (De Graaf, 2013).
We model the chemical shifts by creating an expanded dictionary of shifted
molecules where we consider each molecule and its associated shifts as a group,
allowing us to use the Exclusive Lasso to identify the best shift of each molecule.

We create an expanded dictionary using reference measurements for thirty-

three unique molecules. The dictionary, X ∈ R
4000×(33∗11)
+ , consists of spectra

for thirty-three molecules and ten artificial positional shifts for each molecule,
five left and five right. These shifts are no more then .05ppm greater than or
less than the reference measurement yielding eleven possible positions for each
molecule. We use one randomly selected shift for each molecule, hence simulating
the positional uncertainty found in real data. The columns of this expanded
dictionary are strongly correlated with each other. Molecules are correlated with
their ten shifts as well as other molecules with similar chemical structures. If we
consider each molecule and its shifts a group, this results in a data set that has
high correlation between groups as well as high correlation within each group.
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We simulate an NMR spectroscopy signal y by simulating a random shift
and concentrations that are chosen to recreate the crowding that is common
in NMR data. Often, molecules will resonate at similar frequencies, causing
peaks to overlap (De Graaf, 2013). Informally, this yields signals that appear
smoother with less pronounced peaks because of the crowding. We use weights
that recreate this effect in the region between .5 and 0 ppm. We then simulate
our signal using positive noise so that y = XS∗β∗ + ε where ε is the absolute
value of Gaussian noise thereby ensuring y is non-negative. S∗ is the true set of
shifts.

If all molecules and their shifts are known, the observed NMR signal will be
a linear combination of the molecules. In general, we must estimate the shifts
and we evaluate the effectiveness of our estimates through the mean squared
error ‖β∗ − β̂Ŝ‖22 where β̂Ŝ is a least squares estimator based on the dictionary

restricted to Ŝ an estimated set of shifts. This measures how accurately we
can estimate the concentrations and is more useful than prediction error for a
researcher analyzing NMR spectroscopy data. We compare four methods. First
the Exclusive Lasso with λ = max

i
XT

i y. Second, the Lasso with λ large enough

to estimate one variable in each group. For both methods, if there are more than
one variable in each group we threshold so that there is exactly one variable in
each group. Next, we use Marginal Regression which selects the variable in
each group with the highest correlation with the response. Lastly, we use an
estimator that does not estimate chemical shifts. We refer to this method as the
OLS estimator.

Among all methods, the Exclusive Lasso performs best at quantifying mole-
cule concentrations under positional uncertainty. This case study highlights a
real example where there is high correlation both within and between pre-defined
groups. Consistent with our simulation studies, the Exclusive Lasso performs
best in these situations.

Table 3

Comparison of variable selection methods for NMR spectroscopy.

Mean Squared Error (SE) Prediction Error(SE)

Exclusive Lasso 1.07(.03) 1.34e-04(9.80e-07)
OLS regression 2.87(.06) 2.61e-04(1.16e-06)
Marginal Regression 1.16(.23) 1.45e-04(1.84e-05)
Lasso 2.09(.14) 8.03e-05( 1.09e-05)

9. Discussion

In this work, we focus on statistical questions important to the practitioner,
but there are several directions for future work. Investigating overlapping or
hierarchical group structures, and inference are important open questions. Ad-
ditionally, extending the selection consistency results presented in this work to
signed selection consistency would highlight connections or differences with the
Lasso. One could also use the Exclusive Lasso penalty with other loss functions
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Fig 4. A comparison of the simulated NMR signal and the signal estimated using the Exclusive
Lasso. The estimate recovers most of the peaks suggesting it is selecting a useful set of shifts.
The estimate also zeros out most of the noise in the simulated signal.

such as that of generalized linear models. Additionally, there are many possible
applications of our method besides NMR spectroscopy such as creating index
funds in finance, and selecting genes from functional groups or pathways, among
others. Overall, the Exclusive Lasso is an effective method for within group vari-
able selection in sparse regression; an R-package will be made available for others
to utilize our method.

Appendix A: Proof of Theorems 1 and 2

The proof of Theorems 1 and 2 follows the proof technique presented in Chat-
terjee (2013). There are several differences due to the structure of our penalty
however the assumptions are the same. We assume that Xi is a p dimensional
random variable with covariance Σ. We assume the entries of Xi are bounded
so that ‖Xi‖∞ ≤ M and that the data we observe (Y1, X1) . . . (Yn, Xn) is in-
dependent and identically distributed. Let (Y,X) be the vector and matrix of
all n observations. We let X0 be an independent observation from the same
distribution of X. We also assume the value of the penalty evaluated at the true
parameter is bounded so that P (β∗) ≤ K and that the response is generated by
the linear model Y = Xβ∗ + ε where ε ∼ N(0, σ2I). Let Y0 = X0β

∗ + ε0 where
ε0 ∼ N(0, σ2). Let G be a collection of predefined non overlapping groups such
that ∪

g∈G
g = {1 . . . p}.
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Instead of the Exclusive Lasso penalty, we work with the equivalent con-
strained optimization problem

β̂ = argmin
β:P (β)≤K

n∑
i=1

(Yi −Xiβ)
2.

Let C = {Xβ : P (β) ≤ K}. By definition, Ŷ is the projection of Y onto the
set C. For constrained optimization problems first order necessary conditions for
an optimal solution state that for all d in the linear tangent cone a solution to
the problem x∗ necessarily satisfies f ′(x∗; d) ≥ 0. In our case the linear tangent
cone is the set T�(Ŷ ) = {(x − Ŷ ) : x ∈ C} so an optimal solution satisfies
〈−(Y − Ŷ ), (x − Ŷ )〉 ≥ 0 for all x ∈ C. This follows because Ŷ is the solution
to an optimization problem and the inequality is a necessary property of any
solution to the problem. See Theorem 6.12 in Rockafellar and Wets (2009).
Letting x = Y ∗ we can rewrite 〈(Y − Ŷ ), (Y ∗ − Ŷ )〉 ≤ 0 as the inequality

‖Y ∗ − Ŷ ‖22 ≤ 〈(Y − Y ∗), (Ŷ − Y ∗)〉

=
n∑

i=1

εi

⎛⎝ p∑
j=1

(β̂j −β∗
j )Xi,j

⎞⎠
=

p∑
j=1

(β̂j −β∗
j )

(
n∑

i=1

εiXi,j

)
.

At this point our bound holds for any convex constraint region because it relies
on the optimality conditions for convex nonlinear optimization problems. The
bound also closely resembles the basic inequality for the Lasso because at this
point, we have not used any information about the penalty. The next bound
is where our bound begins to differ from the bound for the Lasso. We use our
assumption P (β∗) ≤ K the definition of β̂ and the structure of the penalty to

bound
p∑

j=1

(β̂j −β∗
j ) so that

p∑
j=1

(β̂j −β∗
j ) ≤

p∑
j=1

| β̂j −β∗
j |

≤
p∑

j=1

| β̂j |+ |β∗
j |

≤ 2(K + |G|).

In the last line, if the norm of the group ‖ β̂g ‖1 is greater then 1 then it is

bounded by ‖ β̂g ‖21 otherwise it is bounded by 1.

This implies that if we let Uj =
n∑

i=1

εiXi,j then

‖Y ∗ − Ŷ ‖2 ≤ 2(K + |G|) max
1≤j≤p

|Uj |.
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Because Uj ∼ N

(
0, σ2

n∑
i=1

X2
i,j

)
we have the bound

E( max
1≤j≤p

|Uj |) ≤ Mσ
√

2n log(2p).

See Lemma 3 in Chatterjee (2013) for proof of the bound. Therefore

E‖Y ∗ − Ŷ ‖2 ≤ 2(K + |G|)Mσ
√
2n log(2p),

and we have Theorem 2:

E[eMSPE(β̂)] ≤ 2(K + |G|)Mσ

√
2 log(2p)

n
.

We use this result to prove Theorem 1. Because X0 is independent of X, the
pair (X0, Y0) is independent of β̂ which was fit with the training data X. This
yields

E[(Y ∗
0 − Ŷ0)

2|X] =

p∑
j,k=1

(β∗
j − β̂j)(β

∗
k − β̂k)E(X0jX0k).

Note that

1

n
‖Y ∗ − Ŷ ‖2 =

1

n

n∑
i=1

p∑
j,k=1

(β∗
j − β̂j)(β

∗
k − β̂k)XijXik.

Combining these two expressions yields

E[(Y ∗
0 − Ŷ0)

2|X]− 1

n
‖Y ∗ − Ŷ ‖2

=

p∑
j,k=1

(β∗
j − β̂j)(β

∗
k − β̂k)[E(X0jX0k)−

1

n

n∑
i=1

XijXik].

We then define Vj,k = [E(X0jX0k)− 1
n

n∑
i=1

XijXik]. Note that Vj,k is the mean of

[E(X0jX0k) −XijXik]. Each of the n terms is bounded so that [E(X0jX0k) −
XijXik] ≤ 2M2. By Hoeffding’s inequality

E( max
1≤j,k≤p

|Vj,k|) ≤ 2M2

√
2 log(2p2)

n
.

We use a version of Hoeffding’s inequality that is rather uncommon so we
refer the interested reader to the appendix of Chatterjee (2013) for a derivation
of the result.
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Finally

E[(Y ∗
0 − Ŷ0)

2|X]− 1

n
‖Y ∗ − Ŷ ‖2 ≤ 4(K + |G|)2 max

1≤j,k≤p
|Vj,k|.

Combining our results and noting that the right-hand side is deterministic
yields Theorem 1

E(Y ∗
0 − Ŷ0)

2 ≤ 2(K + |G|)Mσ

√
2 log(2p)

n
+ 8(K + |G|)2M2

√
2 log(2p2)

n
.

Proof of Corollary 1

If the smallest eigenvalue of Σ is bounded below by c > 0 we can bound
‖ β̂−β∗‖2 by the MSPE such that ‖ β̂−β∗‖22 ≤ 1

c‖ β̂−β∗‖2Σ which follows from

the definition of the Rayleigh quotient showing that ‖ β̂−β∗‖22 goes to 0 as

MSPE(β̂) goes to 0.

Appendix B: Proof of Theorem 3

Roughly, our proof follows two steps.

1. We construct a pair β̂, ẑ that satisfy the stationarity conditions of

β̂ = argmin
β

1

2
‖y −Xβ‖22 +

λ

2

∑
g∈G

(‖βg‖1)2. (8)

while requiring β̂Sc = 0 and ẑ ∈ ∂P (β̂). This implies that the pair is a

solution to the original problem and that β̂ has the true support.
2. We show that the constructed solution is the unique solution.

If we were analyzing the Lasso, steps one and two would only be enough to
ensure that we have recovered a subset of the true support. For the Exclusive
Lasso, verifying that the complement of the support set of the Exclusive Lasso
estimate is equal to the complement of the true support set is enough to ensure
that we have recovered the true support because the Exclusive Lasso cannot
send all variables in a group to zero. Under our assumption of exactly one truly
nonzero variable in each group this is enough to establish selection consistency.
We leave signed support recovery to later work.

Constructing {β̂, ẑ}

We solve the following optimization problem given that we know the true
support S. We call it the Exclusive Lasso oracle problem:

β̂S = argmin
β:βSc=0

1

2
‖y −Xβ‖22 +

λ

2

∑
g∈G

(‖βg‖1)2 (9)
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We take the subgradient and set it equal to zero.(
XT

S XS XT
S XSc

XT
Sc XT

ScXSc

)(
β̂S − β∗

0

)
−
(
XT

S ε
XT

Scε

)
+ λ

(
ẑS
ẑSc

)
= 0 (10)

We know that when β̂i is nonzero the subgradient of ẑS is sign(β̂i)‖β̂g‖.
Under the assumption that there is exactly one true variable in each group we
can simplify so that ẑi = β̂i for each index i in the support set S.

The term ẑSc is more complicated. We solve the above equations to get an
expression for ẑSc . Rewriting the above as two equations gives:

XT
S XS(β̂S − β∗)−XT

S ε+ λẑS = 0

XT
ScXS(β̂S − β∗)−XT

Scε+ λẑSc = 0
(11)

In the first equation ẑS = β̂S so we use the first equation to solve for β̂S .
This yields the expression

β̂S = (XT
S XS + λI)−1XT

S (XSβ
∗ + ε)

We use this expression of the estimate to solve for ẑSc in the second equation.
Plugging in the estimate and rearranging terms yields

ẑSc =
1

λ
XT

Sc [I −XS(X
T
S XS + λI)−1XT

S ](XSβ
∗ + ε)

We need the ẑSc that we have constructed to be an element of the subd-
ifferential ∂P (β̂). For every index j ∈ Sc and in group g we must satisfy the
inequality

|ẑj | < |β̂g|. (12)

We propose a series of inequalities that will imply inequality 12. We consider

|ẑj | ≤ ‖ẑSc‖∞

= ‖ 1
λ
XT

Sc [I −XS(X
T
S XS + λI)−1XT

S ](XSβ
∗ + ε)‖∞

≤ 1

λ

(
‖XT

Sc(XSβ
∗ + ε)‖∞ + ‖XT

ScXS(X
T
S XS + λI)−1XT

S (XSβ
∗ + ε)‖∞

)
≤ 1

λ

(
|‖XT

Sc‖|∞,∞‖(XSβ
∗ + ε)‖∞

+ |‖XT
ScXS(X

T
S XS + λI)−1‖|∞,∞‖XT

S (XSβ
∗ + ε)‖∞

)
≤ 1

λ

(
|‖XT

Sc‖|∞,∞‖XSβ
∗ + ε‖∞

+ |‖XT
ScXS(X

T
S XS + λI)−1‖|∞,∞|‖XT

S ‖|∞,∞‖XSβ
∗ + ε‖∞

)
≤ 1

λ

(
‖XSβ

∗ + ε‖∞ + |‖XT
ScXS(X

T
S XS + λI)−1‖|∞,∞‖XSβ

∗ + ε‖∞
)

<
1

λ
(1 + α)‖XSβ

∗ + ε‖∞
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≤ 1

λ
(1 + α)‖XSβ

∗‖∞ +
1

λ
(1 + α)‖ε‖∞

≤ 1

λ
(1 + α)|‖XS‖|1,∞‖β∗‖1 +

1

λ
(1 + α)‖ε‖∞

≤ 1

λ
(1 + α)‖β∗‖1 +

1

λ
(1 + α)‖ε‖∞

The inequalities follow from the definition of induced matrix norms and in the
fifth inequality by assumption. We assume that our design matrix satisfies an
inequality similar to the irrepresentable condition

|‖XT
ScXS(X

T
S XS + λI)−1‖|∞,∞ < α.

Looking at the right hand side of inequality 12, we note that β̂gmin ≤ |β̂gmin | ≤
|β̂g| where gmin is the index of β̂ with minimum magnitude. Combining this with

our definition of β̂S and rearranging terms so the random variable ε only appears
on the left hand side gives us an inequality

1 + α

λ
‖ε‖∞ − [(XT

S XS + λI)−1XT
S ]gminε

≤ [(XT
S XS + λI)−1XT

S ]gminXSβ
∗ − 1 + α

λ
‖β∗‖1

that when satisfied implies that inequality 12 holds. Because ε is N(0, In) we
show that the inequality holds with high probability. For Lipschitz continuous
function f with constant L and multivariate Gaussian z with mean 0 and iden-
tity covariance Massart (2007) gives the following inequality

P(f(z)− Ef(z) ≥ t) ≤ exp

(
− t2

2L2

)
. (13)

For convenience let (XT
S XS + λI)−1XT

S = A. Using this we rewrite the left
hand side

1 + α

λ
‖ε‖∞ − [(XT

S XS + λI)−1XT
S ]gminε = max

i=1:n

{
1 + α

λ
|eTi ε| − eTgmin

Aε

}
.

For any i we can compute the Lipschitz constant as follows∣∣∣∣1 + α

λ
|eTi x| −

1 + α

λ
|eTi y| − eTgmin

A(x− y)

∣∣∣∣
≤
∣∣∣∣1 + α

λ
|eTi x| −

1 + α

λ
|eTi y|

∣∣∣∣+ ∣∣eTgmin
A(x− y)

∣∣
≤
∣∣∣∣1 + α

λ
|eTi (x− y)|

∣∣∣∣+ ∣∣eTgmin
A(x− y)

∣∣
≤ 1 + α

λ
‖ei‖2‖(x− y)‖2 +

∣∣eTgmin
A(x− y)

∣∣
≤ 1 + α

λ
‖(x− y)‖2 + ‖eTgmin

A‖2‖(x− y)‖2
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≤ 1 + α

λ
‖(x− y)‖2 + ‖eTgmin

‖2‖A‖2,2‖(x− y)‖2

≤ 1 + α

λ
‖(x− y)‖2 +

C1

C2
1 + λ

‖(x− y)‖2

≤
(
1 + α

λ
+

C1

C2
1 + λ

)
‖x− y‖2

where C1 = argmax
C∈{Cmin,Cmax}

|C|
C2+λ is a constant that lets us bound the maximum

singular value of A and ei and egmin are canonical vectors with a 1 in the i or
gmin index respectively and 0 otherwise.

Plugging in the value for α gives us a Lipschitz constant of

L =
1

λ
+

kC2
max

C2
max + λ

+
C1

C2
1 + λ

Combining this with inequalities 12 and 13 we get

P (‖ẑSc‖∞ < |β̂gmin |)

≥ P

(
max
i=1:n

{
1 + α

λ
|eTi ε| − eTgmin

Aε

}
≤ aTgmin

XSβ
∗ − 1 + α

λ
‖β∗‖1

)
= 1− P

(
∪

i=1:n

{
1 + α

λ
eTi ε− eTgmin

Aε ≥ aTgmin
XSβ

∗ − 1 + α

λ
‖β∗‖1

})
− P

(
∪

i=1:n

{
−1 + α

λ
eTi ε− eTgmin

Aε ≥ −
(
aTgmin

XSβ
∗ +

1 + α

λ
‖β∗‖1

)})
≥ 1− 2exp

(
−
(
aTgmin

XSβ
∗ − 1+α

λ ‖β∗‖1
)2

L2
+ log(n)

)

≥ 1− 2exp

(
−
(
1
λ‖β∗‖1

)2
L2

+ log(n)

)
.

The inequality is a result of the union bound and applying the concentration
inequality. In the last inequality, we note that the exponential term is maximized
when the numerator is minimized and show that

1

λ
‖β∗‖1 ≤ 1 + α

λ
‖β∗‖1 − aTgmin

XSβ
∗.

We first note that

aTgmin
XSβ

∗ =

p∑
j=1

k∑
l=1

Vgmin,lVj,l
d2l

d2l + λ
β∗
j

≤
p∑

j=1

k∑
l=1

d2l
d2l + λ

β∗
j
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≤ k
C2

max

C2
max + λ

p∑
j=1

β∗
j

≤ α

λ

p∑
j=1

β∗
j

≤ α

λ
|

p∑
j=1

β∗
j |

≤ α

λ

p∑
j=1

|β∗
j |

=
α

λ
‖β∗‖1.

This implies that the term α
λ‖β∗‖1 − aTgmin

XSβ
∗ is positive and 1

λ‖β∗‖1 ≤
1+α
λ ‖β∗‖1 − aTgmin

XSβ
∗.

If we want the probability of recovering the true support to be at least 1−1/n
then we need ‖β∗‖1 to be on the order of k

√
log(n). Note that

−log(n) > − (‖β∗‖1/λL)2 + log(n)

0 > − (‖β∗‖1/λL)2 + 2log(n)

(‖β∗‖1/λL)2 > 2log(n)

‖β∗‖1/λL >
√

2log(n)

‖β∗‖1 > λL
√
2log(n)

implies that we recover the correct support with probability that goes to 1 as n
goes to infinity and it implies a minimum signal strength similar to the beta-min
condition in typical sparsistency proofs.

Therefore with probability at least 1 − 1/n the inequality ‖ẑSc‖∞ < β̂gmin

holds.

Uniqueness

In the previous section, we establish strict dual feasibility and therefore that
the Exclusive Lasso finds no false positives. Assumption (8) ensures that the re-
stricted program has a unique solution. Together these results imply the solution
to the original problem is unique.

Appendix C: Proof of Theorem 4

Our coordinate descent algorithm minimizes the following optimization problem

β̂ = argmin
β

1

2
‖y −Xβ‖22 + λP (β).
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We show that the assumptions for Theorem 4.1 from Tseng (2001) hold for
the problem above. For a function of the form

f(x) = g(x) + h(x),

where g is convex and differentiable and h is convex but not necessarily differ-
entiable, verifying the assumptions involves showing that:

1. the differential part of our function g satisfies assumption (A1) from Tseng
(2001), where assumption A1 states that the domain of g is open and g is
Gateux differentiable,

2. the function f is a regular function,
3. the level set X0 = {x : f(x) ≤ f(x0)} is compact and that f is continuous

on X0,
4. for every pair i, k ∈ {1 . . . p} it follows that f is jointly pseudo convex in

xi and xk.

First we state several definitions. We say direction d is a vector in Rn. We
allow dk to be the scalar in the kth position in the vector (0 . . . 0, dk, 0 . . . 0).
We abuse notation if the meaning is unambiguous, and also let dk denote the
entire vector with 0s in all positions except for the kth position. It is typical to
define first order optimality conditions in terms of the Gateaux derivative. We
however use the more general forward variation defined as follows:

Definition For a function f the forward variation in direction d at x is

f ′
+(x; d) = lim

t↓0

f(x+ td)− f(x)

t

The Gateaux derivative exists if both the forward and backward variation
exist and are equal. Tseng uses the Gateaux derivative to define his optimal-
ity conditions but for our unconstrained convex non-differentiable problem it
is necessary and sufficient for a minimizer of f to satisfy f ′

+(x; d) ≥ 0 for all
d ∈ Rn. We also use a notion called regularity. Note that this is the same def-
inition of regularity given in Tseng (2001) communicated here for convenience.
Throughout the rest of the paper we use the forward variation and the direc-
tional derivative interchangeably.

Definition A function f is regular at x if f ′(x; d) ≥ 0 for all d such that
f ′(x; dk) ≥ 0.

Regularity ensures that if we have a point that minimizes f coordinate-wise,
then the point minimizes the function f.

Definition A function f is pseudoconvex if f(x + d) ≥ f(x) whenever x ∈
dom(f) and f ′(x; d) ≥ 0.

Assertion 1: The differential part of our function g satisfies assumption (A1)
from Tseng (2001).



The Exclusive Lasso 4245

Proof. If we let

g(β) =
1

2
‖y −Xβ‖22,

its domain is Rp which is an open set. We must also show that g(β) = 1
2‖y −

Xβ‖22 is Gateux-differentiable on Rn. Then

g′(β; d) = lim
t↓0

g(β + td)− g(β)

t

= −dTXT (y −Xβ)

= ∇g(x)T d.

A similar argument holds as t ↑ 0.

Assertion 2: The function f is a regular function.

Proof. Our goal is to show that if we have a point β that minimizes f point
wise i.e. that f ′(β; dk) ≥ 0 for all dk then we have a point that minimizes
f and satisfies the standard first order necessary and sufficient condition for
optimality f ′(β; d) ≥ 0 for all d ∈ Rp. We know that g(β) = 1

2‖y − Xβ‖22 is
Gateux-differentiable on Rp.

Next we show that the entire function f(β) = g(β)+h(β) is regular. Assume
that the point β minimizes f point wise therefore satisfying:

f ′(β; (0...0, dk, 0...0)) ≥ 0

for all dk. Then it follows that

f ′(β; d) = ∇g(β)T d+ lim
t↓0

(
n∑

i=1

|βi + tdi|)2 − (
n∑

i=1

|βi|)2

t

= ∇g(β)T d+ lim
t↓0

(
n∑

i=1

|βi + tdi| −
n∑

i=1

|βi|
)(

n∑
i=1

|βi + tdi|+
n∑

i=1

|βi|
)

t

= ∇g(β)T d+ lim
t↓0

(
n∑

i=1

|βi + tdi| −
n∑

i=1

|βi|
)

t
lim
t↓0

(
n∑

i=1

|βi + tdi|+
n∑

i=1

|βi|
)

= ∇g(β)T d+ lim
t↓0

n∑
i=1

|βi + tdi| −
n∑

i=1

|βi|

t
2‖β‖

≥ ∇g(β)T d+

n∑
i=1

lim
t↓0

|βi + tdi| − |βi|
t

2‖β‖

=

n∑
i=1

f ′(β; (0, . . . , 0, dk, 0, . . . , 0))

≥ 0.
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Assertion 3: The level set X0 = {x : f(x) ≤ f(x0)} is compact and that f is
continuous on X0.

Proof. We show that the function is continuous by showing that the penalty is
continuous and that the differentiable part of the objective function is continu-
ous. Let x, y ∈ X0 then there exists a δ such that for

|x− y| ≤ δ

it follows that
|P (x)− P (y)| ≤ ε.

To find δ consider

|P (x)− P (y)| ≤ P (x− y)

=
1

2

∑
g∈G

(
∑
i∈g

|xi − yi|)2

≤ 1

2

∑
g∈G

(
∑
i∈g

δi)
2.

Note that the first line follows from the reverse triangle inequality. If i ∈ g

then for any ε > 0 we can define δ such that δi =
√
2ε

ng

√
|G|

which shows that the

penalty is continuous on the set.
The term ‖y−Xβ‖22 is Lipschitz continuous with parameter L = λmax(X

TX).
Therefore f is continuous because the sum of continuous functions is a contin-
uous function. Using Theorem 1.6 of Rockafellar and Wets (2009), continuity
implies that the level sets are closed.

The level sets also must be bounded. For any fixed vector β0, we define the
level set as

X0 = {β : ‖y −Xβ‖22 + λP (β) ≤ ‖y −Xβ0‖22 + λP (β0)}.
If we let ‖y − Xβ0‖22 + λP (β0) = α we can consider a vector of the form

βα = (0, . . . , 0,
√

2(|α|+1)
λ , 0, . . . , 0). Our penalty evaluated at this vector gives

λP (βα) = |α|+1 > α. Since ‖y−Xβ‖ ≥ 0 for all x ∈ Rn the objective function
f(βα) > α. This implies that for all β ∈ X0, the absolute value of each index of

β must be less then
√

2(|α|+1)
λ . Therefore the level sets are bounded.

By the Heine-Borel theorem since X0 a closed bounded subset of Rn it is
compact.

Assertion 4: For every pair i, k ∈ {1 . . . p} it follows that f is jointly pseudo-
convex in βi and βk.

Proof. For any pair of indices i, k ∈ {1 . . . p} the function

‖y −Xβ‖22 +
λ

2
P (β)

is jointly convex in βi and βk. Suppose indices i and k are in the same group.
We can rewrite the objective function as
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f1(βi, βk) = ‖y −Xi,kβi,k + c‖22 −
λ

2

∑
g∈G

(
∑
j∈g

|βj |)2

= ‖y −Xi,kβi,k − c0‖22 +
λ

2
(|βi|+ |βk|+ c1)

2 + c2

where c0, c1, c2 are terms constant in βi and βk, Xi,k = (Xi, Xk) are i
th and kth

columns and βi,k = (βi, βk). The function ‖y − Xi,kβi,k − c0‖22 has a positive
semidefinite Hessian so it is convex. We appeal to the definition of convexity for
the penalty. When the elements are in the same group

λ

2
(‖tx+ (1− t)y‖1 + c1)

2 ≤ λ

2
(‖tx‖1 + ‖(1− t)y‖1 + c1)

2

≤ λ

2
(‖tx‖1 + tc1)

2 +
λ

2
(‖(1− t)y‖1 + (1 + t)c1)

2

≤ λ

2
t2(‖x‖1 + c1)

2 +
λ

2
(1 + t)2(‖(y‖1 + c1)

2

≤ λ

2
t(‖x‖1 + c1)

2 +
λ

2
(1 + t)(‖y‖1 + c1)

2.

(14)
If i, k are in different groups then

λP (tx+ (1− t)y) =
λ

2
(|tx1 + (1− t)y1 + c1|)2 + (|tx2 + (1− t)y2 + c2|)2 + c3

which is the sum of two convex functions and therefore convex.
Therefore the function f is convex in every pair of indices which implies that

it is pseudoconvex in every pair of indices.

Given that the objective function satisfies all of the assumptions for Tseng
(2001) Theorem 4.1 we can say that our coordinate descent algorithm converges
to a stationary point. Because our function is convex the stationary point is a
global minimum.

Appendix D: Proof of Theorem 5

For a continuous and almost differentiable function g, Steins formula

df(g) = E[(∇ ∗ g)(y)]
defines the degrees of freedom for normal random variables in terms of the
function (∇ ∗ g). The function (∇ ∗ g) known as the divergence is defined for
g : Rn → Rn as

(∇ ∗ g)(y) =
n∑

i=1

∂gi
∂yi

.

To derive the degrees of freedom for the Exclusive Lasso problem we need to
prove that the estimate is a continuous and almost differentiable function of y.
Tibshirani provides a lemma stating that for a convex set C ⊂ Rn the projection
map PC and the map I − PC are continuous and almost differentiable.

For proof see Tibshirani et al. (2012).
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Lemma The estimate X β̂ = (I − PC)y for the set

C = {u ∈ Rn : P ∗(XTu) ≤ α}
where

P ∗(β) =

√∑
g∈G

‖βg‖2∞

is the dual norm of the square root of our penalty and α is a constant.

Proof. The dual norm of a norm ‖z‖ is defined as the norm ‖x‖∗ such that
‖z‖ = sup{〈x, z〉 : ‖x‖∗ ≤ 1}. Note that for the square root of our penalty√

P (β̂) =

〈
sign(β̂)‖ β̂gi ‖1√∑

g ‖ β̂ ‖21
, β̂

〉

This means that our dual norm is the norm such that P ∗(
sign(β̂)‖ β̂gi

‖1√∑
g ‖ β̂ ‖2

1

) ≤ 1

which holds for the norm

P ∗(β) =

√∑
g∈G

‖βg‖2∞

We show that θ = y−X β̂ is equal to the projection of y onto the set C. The
projection θ = PC(y) can be characterized as a point θ satisfying the first order
optimality conditions for the constrained optimization problem min

θ∈C
‖y − θ‖22.

The first order optimality conditions are

f ′(θ; d) ≥ 0

〈y − θ, θ − u〉 ≥ 0

for all u ∈ C.
We must verify that f ′(θ; d) ≥ 0. If we let θ = y −X β̂(y) then

〈y − θ, θ − u〉 = 〈X β̂, y −X β̂−u〉 (15)

= 〈X β̂, y −X β̂〉 − 〈XTu, β̂〉 (16)

=
α

2

√
P (β̂)− 〈XTu, β̂〉 (17)

= max
P∗(w)≤α

2

〈w, β̂〉 − 〈XTu, β̂〉 (18)

≥ 0. (19)

Line 3 follows from the fact that there exists a regularization parameter such
that the necessary conditions for the Exclusive Lasso problem are exactly the
same as the necessary conditions for the optimization problem that uses the
square root of the Exclusive Lasso penalty. Notice that if we let α = 2λP (β̂)

1
2

then λ∂P (β̂) = α∂

√
P (β̂). This implies that β̂ necessarily satisfies

−XT (y −X β̂) + α∂

√
P (β̂) = 0.
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Taking the inner product with β̂ yields

(X β̂)T (y −X β̂) =
α

2

√
P (β̂).

Line 5 follows for the set C = {u ∈ Rn : P ∗(XTu) ≤ α
2 } proving that

y −X β̂ is equal to the projection of y onto the set C. This implies that X β̂ =
(I − PC)y.

Combining Lemmas 1 and 2 yields that the exclusive lasso estimate is con-
tinuous and almost differentiable. Next we define β̂ in terms of the support set
S. First recall the KKT conditions

−XT (y −X β̂) + λz = 0

where

zi =

{
sign(β̂i)‖ β̂g ‖1 : β̂i �= 0, i ∈ g[
−‖ β̂g ‖1, ‖ β̂g ‖1

]
: β̂i = 0.

Note that we can rewrite the sub gradient for the indices i ∈ g ∩ S. If we let
sg∩S = sign(β̂g∩S)

zg∩S = sg∩Ss
T
g∩S β̂g∩S .

We can write the sub gradient over the indices of the support as

zS = MS β̂S

where MS is a block diagonal matrix with the matrices {sg∩Ss
T
g∩S : g ∈ G} on

the diagonal.
We can rewrite the KKT conditions with respect to the support set

−
[
XT

S

XT
Sc

](
y −

[
XS XSc

]
β̂
)
+ λ

(
zS
zSc

)
= 0.

This is equal to

−XT
S y +XT

S XS β̂S +λzS = 0

−XT
Scy +XT

ScXS β̂S +λzSc = 0.

We then solve for β̂S using zS = MS β̂S yielding

β̂S = (XT
S XS + λMS)

†XT
S y.

Note that we are relying on the fact that we have already proved the existence
of a solution to the optimization problem in the proof for Theorem 4. This gives
us an estimate ŷ = XS(X

T
S XS + λMS)

†XT
S y. The divergence is therefore

(∇ ∗X β̂)(y) = trace[XS(X
T
S XS + λMS)

†XT
S ]

which is equal to the sum of the eigenvalues.
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Appendix E: Selecting one variable per group

For specific values of X and y the Exclusive Lasso will select more than one
variable per group for all values of the regularization parameter λ. This means
that although the Exclusive Lasso is designed to select exactly one element
per group we cannot guarantee the Exclusive Lasso will enforce the correct
structure. Consider an example. Suppose we characterize the Exclusive Lasso
estimate using the equicorrelation set. Recall the equicorrelation set

E =

{
i :

|XT
i (y −X β̂)|
‖ β̂g ‖1

= λ

}
If we let s be a vector such that si = sign(β̂i) for i ∈ E and γ be a vector

such that γi = ‖ β̂gi ‖1 where gi is the group for an index i ∈ E . Let γ̄ be a

vector such that γ̄i = ‖ β̂gi ‖1 − | β̂i | then we can solve for β̂.

XT
E (y −XE β̂E) = λγs

= λγ̄s+ λ β̂E

β̂E = (XT
E XE + λI)−1[XT

E y − λγ̄s].

LetX = I2 and we let yT = (1, 1) then becauseX is orthonormal the estimate
simplifies to

β̂E =
1

1 + λ
y − λ

1 + λ
γ′s.

In this case β̂1 = β̂2 so the term
λ

1+λγ
′s is going to shrink both indices equally

for all λ. This prevents the estimate from selecting exactly one element in each
group.

We conjecture that conditions on X and y for this to occur can be formalized,
but this is beyond the scope of this work. Intuitively, this behavior occurs when
two or more variables get shrunken equally. As such, this behavior is relatively
rare in practice. If it does occur and one variable per group is desired, we propose
to use BIC to select λ and apply group-wise thresholding.

Appendix F: Selecting the regularization parameter

We compare our unbiased estimate of the degrees of freedom to simulated de-
grees of freedom following the set up outlined in Efron et al. (2004) and Zou
et al. (2007). These works use Stein’s unbiased risk estimation to estimate the
degrees of freedom of an estimate of the form ŷ = Hy where y is Gaussian.

In our simulation, we let β∗ be the true parameter and we simulate y∗, B
times such that y = Xβ∗+ε. For simplicity we let ε ∼ N(0, 1). We then calculate
an estimate for the covariance using constant c = 0, again for simplicity. Because
y is standard Gaussian with σ2 = 1, the simulated degrees of freedom is

df(ŷ) =
n∑

i=1

ĉov(ŷi, yi)/σ
2
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where we simulate the covariances according to ĉov(ŷi, yi) =
1
B

B∑
b=1

(ŷi−ai)(y
∗
i −

Xβ∗
i ) where ai is a fixed known constant. In our work we let ai = [Xβ∗]i. In

our simulations we set B = 500 and found that empirically our estimate of the
degrees of freedom matched the simulated degrees of freedom quite well.

In this section we include the following table that lists the point estimates
and their standard errors.

Regularization Simulated DF Estimated DF
Parameter (Standard Error) (Standard Error)

0.01 94.76 (1.35) 95.46 (1.45)
0.01 94.45 (1.36) 94.56 (1.55)
0.01 94.07 (1.34) 93.59 (1.69)
0.02 92.16 (1.32) 92.43 (1.84)
0.02 91.12 (1.30) 90.92 (2.02)
0.03 89.36 (1.29) 89.18 (2.27)
0.04 87.39 (1.25) 87.27 (2.37)
0.06 85.33 (1.24) 85.00 (2.54)
0.07 80.94 (1.17) 82.12 (2.62)
0.10 78.83 (1.15) 78.75 (2.94)
0.14 75.92 (1.13) 75.07 (3.07)
0.18 70.38 (1.04) 70.48 (3.33)
0.25 65.00 (0.98) 65.41 (3.49)
0.33 59.37 (0.91) 59.69 (3.84)
0.45 52.89 (0.84) 52.83 (3.82)
0.61 45.45 (0.74) 45.83 (3.75)
0.82 37.57 (0.65) 37.89 (3.68)
1.11 30.39 (0.59) 30.41 (3.55)
1.49 22.77 (0.52) 23.01 (3.17)
2.01 17.44 (0.52) 17.26 (2.59)
2.72 13.16 (0.55) 12.96 (2.07)
3.67 9.96 (0.64) 10.16 (1.73)
4.95 8.02 (0.78) 8.55 (1.51)
6.69 6.60 (0.99) 7.28 (1.21)
9.03 6.39 (1.29) 6.43 (0.96)

12.18 5.32 (1.66) 5.78 (0.84)
16.44 4.25 (2.15) 5.29 (0.64)
22.20 5.85 (2.74) 4.81 (0.54)

Appendix G: Additional simulations

Here, we provide additional simulations that explore the Exclusive Lasso under
several conditions: unequal group sizes, unequal signal strengths, and a combi-
nation of the unequal group sizes and signal strengths. Our simulation set-up
largely follows from those used for Table 1 with the following modifications.
When the group sizes are unequal, the groups consist of 10, 30, 20, 30, and 10
variables. When the group sizes are equal, each group consists of 20 variables.
When the signal strengths are unequal, the values for the true parameters are
1, -4, 2, 1, and -1. When the signal strengths are of equal, the magnitude of
the true parameters is 0.7 for all true variables. For these simulations, we let
w = .8 and b = .8, again denoting the within and between group correlations
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of the autoregressive covariance matrix. Results are presented in Table 4. Over-
all, the Exclusive Lasso seems to perform equally well for unequal group sizes,
but is effected by differences in signal strength. In this situation, however, the
Thresholded Exclusive Lasso outperforms all other methods.

Appendix H: Proximal gradient descent

We develop a method for efficiently computing the proximal operator of the
Exclusive Lasso penalty. The proximal operator facilitates the development of
common first order algorithms like proximal gradient descent and alternating
direction method of multipliers (ADMM) but it is impossible to compute in
closed form. We develop an algorithm for approximating the proximal opera-
tor based on coordinate descent. In this section, we use our proximal operator
algorithm to develop a proximal gradient descent algorithm and prove that it
converges.

Recall the proximal operator problem

proxP (z) = argmin
β

1

2
‖β − z‖22 +

λ

2

∑
g∈G

‖βg‖21. (20)

For the Exclusive Lasso penalty, there is no closed form solution, so we use a
coordinate descent algorithm to compute the proximal operator. Coordinate up-
dates for the proximal operator algorithm are extremely similar to the updates
for the Exclusive Lasso regression problem.

Lemma (1): For proximal operator proxP (z) where P is our Exclusive Lasso
penalty, if S(z, λ) = sign(z)(|z| − λ)+ and j is in group g then the coordinate
wise updates are:

βk+1
j = S

⎛⎝ 1

1 + λ
zj ,

λ

1 + λ

∑
l∈g\j

|βk
l |

⎞⎠ . (21)

This algorithm converges:

Corollary (2): The proximal operator coordinate descent algorithm converges
to the global minimum of the optimization problem given in (20).

Proof This is a special case of the Exclusive Lasso regression problem with
X = I.

Proximal Gradient Descent

Given a computable proximal operator many first order algorithms can be
derived for the Exclusive Lasso. As an example we derive a proximal gradient
descent algorithm for the Exclusive Lasso. Loosely, proximal gradient descent
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Table 4

Comparison of variable selection methods with exactly one true variable in each group. The
groups sizes and the magnitude of the true parameters are unequal.

Unequal Signal Strength

Exclusive Lasso Marginal Group-wise Thresholded
Lasso Regression Marginal Exclusive

Regression Lasso

True Vars (SE) 2.00 (0.00) 3.50 (0.71) 1.00 (0.00) 2.00 (0.0 0) 5.00 (0.00)
False Vars (SE) 3.00 (0.00) 1.50 (0.71) 4.00 (0.00) 3.00 (0.00) 0.00 (0.00)
Pred Err (SE) 1.84 (0.11) 1.48 (0.21) 2.60 (0.17) 1.84 (0.10) 1.03 (0.07)

Thresholded Thresholded Elastic Thresholded
Lasso Regularization Net Ridge

Path

True Vars (SE) 3.80 (0.92) 3.50 (0.71) 1.60 (0.52) 3.50 (0.53)
False Vars (SE) 1.20 (0.92) 1.50 (0.71) 3.40 (0.52) 1.50 (0.53)
Pred Err (SE) 1.33 (0.20) 1.37 (0.14) 2.18 (0.44) 1.59 (0.13)

Unequal Group Size

Exclusive Lasso Marginal Group-wise Thresholded
Lasso Regression Marginal Exclusive

Regression Lasso

True Vars (SE) 4.90 (0.32) 3.10 (0.57) 2.20 (0.79) 2.70 (0.67) 4.80 (0.32)
False Vars (SE) 0.10 (0.32) 1.90 (0.57) 2.80 (0.79) 2.30 (0.67) 0.20 (0.32)
Pred Err (SE) 1.10 (0.10) 1.32 (0.08) 2.58 (0.12) 1.25 (0.13) 1.10 (0.10)

Thresholded Thresholded Elastic Thresholded
Lasso Regularization Net Ridge

Path

True Vars (SE) 3.20 (1.23) 3.20 (0.79) 2.30 (0.82) 3.30 (0.67)
False Vars (SE) 1.80 (1.23) 1.80 (0.79) 2.70 (0.82) 1.70 (0.67)
Pred Err (SE) 1.27 (0.15) 1.22 (0.15) 1.44 (0.13) 1.33 (0.16)

Unequal Group Size and Unequal Signal Strength

Exclusive Lasso Marginal Group-wise Thresholded
Lasso Regression Marginal Exclusive

Regression Lasso

True Vars (SE) 2.10 (0.32) 3.50 (0.71) 1.00 (0.00) 2.00 (0.00) 5.00 (0.00)
False Vars (SE) 2.90 (0.32) 1.50 (0.71) 4.00 (0.00 3.00 (0.00) 0.00 (0.00)
Pred Err (SE) 1.81 (0.18) 1.48 (0.21) 2.60 (0.17) 1.84(0.12) 1.03 (0.07)

Thresholded Thresholded Elastic Thresholded
Lasso Regularization Net Ridge

Path

True Vars (SE) 3.80 (0.92) 3.50 (0.71) 1.60 (0.52) 3.50 (0.53)
False Vars (SE) 1.20 (0.92) 1.50 (0.71) 3.40 (0.52) 1.50 (0.53)
Pred Err (SE) 1.33 (0.44) 1.37 (0.14) 2.19 (0.44) 1.59 (0.13)
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algorithms proceed by moving in the negative gradient direction of the smooth
loss projected onto the set defined by the non-smooth penalty. Proximal gradient
descent can be accelerated yielding a convergence rate that is optimal for first
order methods. However for simplicity, we present the unaccelerated version.
For our proximal gradient descent algorithm, each coordinate update depends
on the other coordinates in the same group. Because of this, we can implement
this in parallel over the groups, dramatically reducing computation time. We
use our coordinate descent algorithm to compute the proximal operator. Using
the negative gradient of our �2 regression loss, our proximal gradient descent
update is βk+1 = proxP (β

k − (XTXβk −XT y)/L), where L = λmax(X
TX) is

the Lipschitz constant for our squared error loss. Putting everything together,
we give an algorithm outline for our Exclusive Lasso proximal gradient descent
algorithm in Algorithm 2.

Input: β0 ∈ Rp, ε, δ > 0
Output: β̂ ∈ Rp

while ‖βk+1 − βk‖ > ε do
zg = βk

g − 1
L
(XT

g Xβk −XT
g y)

In parallel for each g:
Initialize β̃g ∈ Rpg

while ‖β̃t+1
g − β̃t

g‖ > δ do
for j ∈ g do

β̃t+1
j = S

(
1

λ+1
[zg ]j ,

λ
λ+1

∑
l∈g\j

|β̃t
l |
)

βk+1
g = β̃g

return β

Algorithm 2: A Proximal Gradient Descent Algorithm

We also need to prove convergence of Algorithm 2 which is non standard
as we never calculate the proximal operator exactly, resulting in a sequence of
errors {εk}. We show that as long as the sequence of errors converges to zero,
the proximal gradient descent algorithm will converge.

Theorem (6): The objective values of the proximal gradient descent algorithm
converge to the Exclusive Lasso solution at a rate of at least O(1/k) when the
sequences {‖εk‖} and {√εk} are summable.

Proof Our result depends on work by Schmidt et al. (2011). We seek the con-
vergence rate for the our Exclusive Lasso proximal gradient descent algorithm.
In our algorithm at each step k the proximal operator is computed to within
a small error εk such that the iterate xk = εk + argmin

x
‖y − x‖22 + λP (x).

As long as the sequence of errors is summable the algorithm will converge at
a rate of at least O(1/k) when the following assumptions hold. For function
f(x) = g(x) + h(x) we assume:

1. the function g is convex with a Lipschitz-continuous gradient,
2. the function h is a lower semi-continuous proper convex function,
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3. there exists a point x∗ ∈ R that minimizes f ,
4. the points xk are εk-optimal solutions to the proximal operator optimiza-

tion problem at iteration k.

We must verify that these assumptions hold for the Exclusive Lasso

Assumption 1: In our case g(β) = 1
2‖y −Xβ‖22 so

|‖y −Xβ1‖2 − ‖y −Xβ2‖2| ≤ ‖(y −Xβ1)− (y −Xβ2)‖2
= ‖X(β1 − β2)‖2
≤ ‖X‖2‖(β1 − β2)‖2
= λmax(X

TX)‖(β1 − β2)‖2
which implies that g is Lipschitz-continuous with Lipschitz constant L =
λmax(X

TX) the largest eigenvalue of XTX.

Assumption 2: Because ‖x‖1 is continuous for all x ∈ Rn and b(z) = z2

is continuous for all z ∈ R their composition ‖x‖21 is continuous at all points
in Rn. To show that the penalty is convex we will consider the convexity of
f(x) = ‖x‖21. For t ∈ [0, 1] and x, z ∈ Rn

‖tx+ (1− t)z‖21 ≤ (t‖x‖1 + (1− t)‖z‖)2

≤ t‖x‖21 + (1− t)‖z‖21.

Therefore f(x) = ‖x‖21 is convex. The convexity of P (β) follows from the fact
that the sum of convex functions is also convex.

The penalty is proper by definition since for all x ∈ Rn we have P (x) �= ∞.

Assumption 3: Using Theorem 1.9 from Rockafellar and Wets (2009) we show
existence of a solution. We know the level sets Xα = {x : f(x) ≤ α} are bounded
for all α ∈ R by Assertion (3) in Appendix C and we have already shown that
both g and h are continuous so their sum must also be continuous. Therefore,
because the level sets of our function f are bounded, and f is continuous and
proper by Theorem 1.9 there exists a minimum to our objective function f .

Assumption 4: This assumption holds by Theorem 4.
Therefore by proposition 1 from Schmidt et al. (2011) the Exclusive Lasso

algorithm converges at a rate of O(1/k).
Overall, this particular algorithm compares well to the iterative soft thresh-

olding algorithm, a proximal gradient descent algorithm for the Lasso (Beck
and Teboulle, 2009). Although computing the proximal operator is more com-
plicated due to the structure of the penalty, the convergence rate is the same
order as the convergence rate for the iterative soft thresholding algorithm. The
fact that the iterates are easy to compute and the convergence results are com-
petitive reinforce our empirical observations; despite the additional structure,
the Exclusive Lasso proximal gradient descent algorithm compares well to first
order methods for the Lasso and other penalized regression problems.
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